WICLO LOUIC

Extract from our online catalogue:

esf-1/15/CDF/A

Current to: 2024-02-26

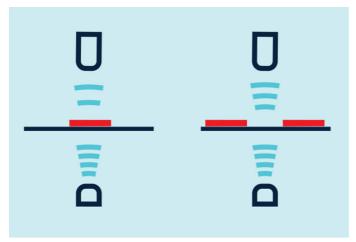
The esf-1 fork sensor can detect labels reliably even at high label speeds.

HIGHLIGHTS

- → 3 Teach-in methods → for the detection of labels even outside the standard
- **>** Response time < 300 μ s: **>** for use at high web speeds
- ➤ QuickTeach ➤ simplified Teach-in process
- > IO-Link interface > for support of the new industry standard
- > Smart Sensor Profile > more transparency between IO-Link Devices
- > Smart Sonic Function > recipe management via IO-Link

BASICS

- > Label and splice sensor as a fork sensor
- > 2 switching outputs > for label/ splice detection and web break monitoring
- > Teach-in optionally via button or pin 5
- > LinkControl > as optional assistance for installation and commissioning

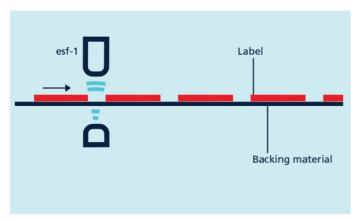

Description

The functional principle

Labels are guided through the fork. An ultrasonic transmitter in the lower leg of the fork beams a fast sequence of pulses through the backing material. The sound pulses cause the backing material to vibrate such that a greatly attenuated sound save is beamed from the opposite side. The receiver in the upper leg of the fork receives this sound wave.

The backing material transmits a different signal level from the label. This signal difference is evaluated by the esf-1. The signal difference between the backing material and the label can be very slight. To ensure a reliable distinction, the esf-1 has to learn the label.

Backing material with a label provides an attenuated signal level

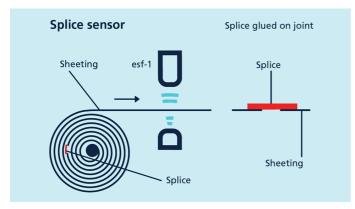

The esf-1

can reliably detect high-transparency, reflective materials as well as metallised labels and labels of any colour. The measurement cycle time automatically self-adjusts to the sound power required. For thin labels and backing materials, the esf-1 can work at its maximum speed, with a response time of $< 300 \, \mu s$.

To be able to detect special labels, for example labels with punches or perforations, there are three different Teach-in methods available.

A) Learn both backing material and label dynamically

During the Teach-in process, the backing material and its labels are guided through the fork at a constant speed. The esf-1 sensor automatically learns the signal level for the labels and for the gaps between the labels. This is the standard Teach-in for labels.


esf-1 as label sensor

B) Separate Teach-in for backing material and labels

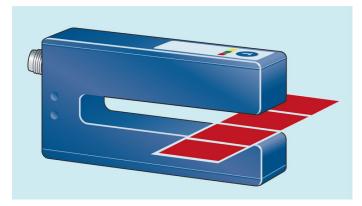
The signal level difference for the backing material and labels might be very slight. In order to still scan labels with very little difference in signals, Teach-in for the signal levels is done separately: Teach-in is first done for the backing material and then for the label on it. The switching threshold then lies between these two signal levels.

C) Learn web material only

Web material is generally processed from a roll. The splice to be detected is hidden somewhere in the roll. There is a separate Teach-in method available for this purpose, in which only the sheeting is learned. The esf-1 detects the level difference at the splice and sets its output.

esf-1 as splice sensor

The Teach-in procedure


can optionally be carried out with the button on the top of the housing or with pin 5 on the unit's connector.

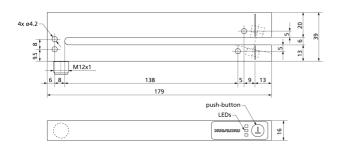
For QuickTeach

the esf-1 learns the material for the duration that the button is pushed or pin 5 is controlled.

With LinkControl

the esf-1 can optionally be parameterised. Measured values can also be shown graphically.

Labels are guided through the fork. The esf-1 reacts to the signal difference between the backing material and the label.


IO-Link

esf-1 ultrasonic label and splice sensors have a Push-Pull switching output and support IO-Link in version 1.1.

esf-1/15/CDF/A

scale drawing

detection zone

1 x Push-Pull + 1 x pnp

working range	sheeting with weights of $<$ 20 g/m 2 up to $>>$ 400 g/m 2 , metal-laminated sheets and films up to 0.2 mm thick, self-adhesive films, labels on backing material
design	fork-like
operating mode	IO-Link label/splice detection
particularities	larger fork width/depth IO-Link Smart Sensor Profile

ultrasonic-specific

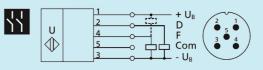
means of measurement	pulse operation with amplitude evaluation
transducer frequency	500 kHz

electrical data

operating voltage U _B	20 - 30 V d.c., reverse polarity protection
voltage ripple	± 10 %
no-load current consumption	≤ 50 mA
type of connection	5-pin M12 initiator plug

esf-1/15/CDF/A

switching output label/splice detected Push-Pull, U_B -3 V, $-U_B$ +3 V, I_{max} = 100 mA NOC/NCC adjustable, short-circuit-proof
switching output label/splice detected web break pnp: $I_{max} = 200 \text{ mA } (U_B-2V)$ NOC/NCC adjustable, short-circuit-proof
300 μs up to 2,25 ms, dependent on the material
< 300 ms
com input synchronisation input teach-in input
esf-1/15/CDF/A
16952
yes
COM2 (20.4 kBand)
COM2 (38,4 kBaud)
4 ms
4 ms
4 ms 32 Bit PDI Bit 0: initial state Pin 4; Bit 1: initial state Pin 2; Bit 2: web break; Bit 8-15:
4 ms 32 Bit PDI Bit 0: initial state Pin 4; Bit 1: initial state Pin 2; Bit 2: web break; Bit 8-15: scale (Int. 8); Bit 16-31: measured value (Int. 16) Identification, switched output, add-ons, temperature compensation,
4 ms 32 Bit PDI Bit 0: initial state Pin 4; Bit 1: initial state Pin 2; Bit 2: web break; Bit 8-15: scale (Int. 8); Bit 16-31: measured value (Int. 16) Identification, switched output, add-ons, temperature compensation, operation


esf-1/15/CDF/A

housing	
fork width	6 mm
fork depth	165 mm
material	aluminium anodized
ultrasonic transducer	polyurethane foam, epoxy resin with glass contents
class of protection to EN 60529	IP 65
operating temperature	+5°C to +60°C
storage temperature	-40°C to +85°C
weight	80 g

technical features/characteristics

1 push-button com input
Teach-in and QuickTeach via push-button Teach-in via com input on pin 5 LCA-2 with LinkControl IO-Link
yes
1 x LED green: working, 1 x LED yellow: switch status Pin 4, 1 x LED red: switch status Pin 2
larger fork width/depth IO-Link Smart Sensor Profile

pin assignment

order no. esf-1/15/CDF/A

The content of this document is subject to technical changes. Specifications in this document are presented in a descriptive way only. They do not warrant any product features.